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Abstract: Satellites have provided decades of valuable cloud observations, but the data from con-
ventional passive radiometers are biased toward information from at or near cloud top. Tied with
the Joint Polar Satellite System (JPSS) Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud
Calibration/Validation research, we developed a statistical Cloud Base Height (CBH) algorithm using
the National Aeronautics and Space Administration (NASA) A-Train satellite data. This retrieval,
which is currently part of the National Oceanic and Atmospheric Administration (NOAA) Enterprise
Cloud Algorithms, provides key information needed to display clouds in a manner that goes beyond
the typical top-down plan view. The goal of this study is to provide users with high-quality three-
dimensional (3D) cloud structure information which can maximize the benefits and performance of
JPSS cloud products. In support of the JPSS Proving Ground Aviation Initiative, we introduced Cloud
Vertical Cross-sections (CVCs) along flight routes over Alaska where satellite data are extremely
helpful in filling significant observational gaps. Valuable feedback and insights from interactions
with aviation users allowed us to explore a new approach to provide satellite-based 3D cloud data.
The CVC is obtained from multiple cloud retrieval products with supplementary data such as tem-
peratures, Pilot Reports (PIREPs), and terrain information. We continue to improve the product
demonstrations based on user feedback, extending the domain to the contiguous United States
with the addition of the Geostationary Operational Environmental Satellite (GOES)-16 Advanced
Baseline Imager (ABI). Concurrently, we have refined the underlying science algorithms for improved
nighttime and multilayered cloud retrievals by utilizing Day/Night Band (DNB) data and exploring
machine learning approaches. The products are evaluated using multiple satellite data sources and
surface measurements. This paper presents our accomplishments and continuing efforts in both
scientific and user-engagement improvements since the beginning of the VIIRS era.

Keywords: VIIRS; cloud base height retrieval; 3D satellite cloud products; aviation weather
applications; user engagement

1. Introduction

Clouds are one of the most uncertain factors in global climate modeling and play an
important role in weather forecasting as visible indicators of hazardous weather condi-
tions. A better understanding and more accurate parameterizations of clouds are critical
to advancing various weather applications used operationally for hazardous condition
forecasting [1,2] and climate studies related to global radiative impacts [3–6]. Compre-
hensive cloud information is particularly critical in data-sparse regions such as Alaska
where weather conditions can change rapidly and many residents rely on aviation to access
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goods and services. More reliable cloud data that aviation meteorologists and pilots can
practically utilize and readily assess for weather conditions are required to make safe flight
decisions, thus supporting aviation safety [7,8].

Satellite-derived cloud products provide crucial information about global cloud prop-
erties. In the realm of polar-orbiting satellites, the Advanced Very High Resolution Ra-
diometer (AVHRR) sensors carried on the U. S. NOAA polar-orbiting platforms (POES) and
the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT)
[Meteorological Operational (MetOp)] satellites with morning and afternoon acquisitions
have offered long-term cloud data since 1978 [9,10]. In particular, observations provided by
the Moderate Resolution Imaging Spectroradiometer (MODIS) [11] on board the National
Aeronautics and Space Administration (NASA) Terra and Aqua satellites contributed sig-
nificantly to advancing our understanding and retrieval techniques on cloud distributions
and microphysical properties with higher spectral resolution [12]. More recently, observa-
tions from the VIIRS instrument aboard two Joint Polar Satellite System (JPSS) satellites,
the NOAA/NASA Suomi National Polar-orbiting Partnership (Suomi NPP or S-NPP)
and NOAA-20, have been providing useful cloud information, ensuring the continuity of
meteorological observations from polar orbit.

Leveraging the technical and scientific advances from these polar-orbiting satellites,
the next-generation geostationary satellites such as the Japanese Himawari-8 Advanced
Himawari Imager (AHI) [13], U.S. NOAA GOES-R series carrying the ABI [14], the Chinese
Feng Yun-4 series (FY-4) with the Advanced Geosynchronous Radiation Imager (AGRI) [15],
and the South Korean GEOstationary Korea Multi-Purpose SATellite-2A (GEO-KOMPSAT-
2A or GK-2A) with the Advanced Meteorological Imager (AMI) [16] have provided global
cloud observations with significantly advanced temporal/spatial resolutions equipped
with 14–16 spectral bands in the visible, near-IR, and IR spectrum.

Satellite remote sensing via these conventional passive radiometers such as VIIRS and
ABI has provided a ready means of estimating various cloud properties, including cloud
top height, optical thickness (COT), and effective particle size (EPS) [17–19]. However,
the information from these sensors using passive radiometers is limited mostly to 2D
cloud-top views, which lack information about vertical cloud structure. The ability to probe
deeper into clouds and describe their vertical structure is challenging due to the inherent
limited sensitivity of passive radiometers to this information—while instead providing
bulk information on the vertically integrated properties.

Cloud base height (CBH; referred to as “cloud ceiling” when pertaining to the cloud
layer closest to the surface) is a crucial parameter for weather and climate research, includ-
ing aviation weather applications [7,20–23]. For example, knowledge of CBH relative to
the 0◦ Celsius isotherm is of prime importance to identifying the vertical extent of potential
aircraft icing hazards as well as pilot visibility, e.g., [24,25], since cloud particles can exist
in liquid phase at sub-freezing temperatures depending on the composition of the aerosol
environment in which they formed. CBH and related parameters such as cloud base tem-
perature and pressure directly impact downwelling longwave radiative fluxes, and thus
alter global radiative balance and climate [26–29].

Several methods for satellite-based CBH retrieval have been attempted to confront
this challenge using different sensors over the last few decades. Passive microwave mea-
surements have been used for cloud vertical information, e.g., [30,31]. Wilheit and Hutchi-
son [32] proposed a CBH retrieval method by combining passive microwave brightness
temperature and infrared (IR) cloud top temperature data. Light scattering characteristics
inside and below the cloud in the oxygen A-band have been utilized in estimating cloud
geometric thickness (CGT) which can be used to infer CBH [33–36]. A spectral radiance
matching algorithm that combines CBH observations from active radar and lidar sensors
with passive visible (VIS) and IR imagery has been investigated [37,38]. A combination of
cloud retrieval products and ancillary data has been employed to derive CBH for cloudy
pixels for VIS and IR passive sensors, e.g., [39–41].
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A few data fusion methods have also been explored combining satellite VIS and IR
data with surface-based observations, e.g., [7,24,42]. A data mining algorithm has been
used to relate VIS and IR satellite imagery with numerical weather prediction (NWP)
model data for cloud ceilings [43]. An assumption of adiabatic processes is often used to
derive cloud thickness for boundary layer clouds [44–46]. More recently, machine learning
approaches have been employed to estimate CBHs, e.g., [47,48].

Among these approaches, the CBH retrieval method based on Hutchison et al.’s
studies [39,40] was selected as one of the S-NPP VIIRS operational Environmental Data
Records (EDRs) produced through the Interface Data Processing Segment (IDPS), which
was the original ground system developed by the JPSS program to distribute JPSS data
products. We refer to this initial version of VIIRS CBH as IDPS CBH. However, previous
research using CloudSat data showed that IDPS CBH errors exceeded the JPSS program
error specifications [49]. This validation study led to the development of a new statistical
CBH algorithm with improved performance meeting the JPSS specifications [50], which
is now part of the NOAA Enterprise Cloud Algorithms. The full list of VIIRS cloud
products can be found at https://www.star.nesdis.noaa.gov/jpss/clouds.php (accessed on
31 October 2022).

This paper presents our research efforts to provide users with improved 3D cloud
structure information increasing the utility of JPSS cloud products. We developed a statis-
tical CBH algorithm, tied with JPSS Cloud Calibration/Validation activities started with
the VIIRS launch in 2011, which is a key component for 3D cloud data. The algorithm is
currently operational for JPSS VIIRS and is also used to improve the ABI Cloud Cover
Layers (CCL) products onboard the GOES-R series of satellites. In particular, using the CBH
information together with multiple cloud retrieval products, we introduce an innovative
approach to build 3D cloud structures. This development allows pilots to anticipate cloud
conditions in three dimensions along a vertical path within a cloud cross-section. The ap-
proach has been improved through active interactions with aviation users. These important
user-engagement activities are addressed together with current scientific approaches for
further refinements of the algorithm and products.

The paper is structured as follows: Section 2 reviews the physical basis and construction
of the CBH algorithm; Section 3 presents validation of the algorithm; Section 4 details the
application of the CBH information to an improved version of the CCL product; Section 5
describes efforts to extend the 3D cloud structure description to multi-layer profiles via machine-
learning and model-fusion techniques; Section 6 examines the utility of these products in the
context of aviation user; Section 7 considers the specific challenges and algorithm modifications
necessary to enable 3D cloud estimates at night; and Section 8 concludes the paper.

2. An Overview of the CBH Algorithm

Retrieval of CGT provides the information needed to convert 2D cloud information
into a first-order estimate of 3D cloud structure. Cloud information from visible, shortwave
infrared (SWIR), and thermal infrared (TIR) satellite instruments such as VIIRS is mostly
biased toward the cloud top due to natural limitations of the wavelengths available with
traditional passive radiometers; in a cloudy atmosphere, the spectral characteristics of these
wavelengths result in the observation of radiation that is primarily reflected or emitted
from near cloud tops, but there is limited information about radiation originating from
deeper inside cloud layers. While infrared channels can estimate cloud top height (CTH),
and visible/SWIR information provides an estimate of vertically integrated water content
(Cloud Water Path; CWP), they cannot measure CBH directly.

The IDPS CBH was the original operational algorithm to retrieve CBH from VIIRS.
Through validation studies tied to the JPSS program, IDPS CBH products for S-NPP were
compared against CloudSat observations, which provide highly vertically resolved cloud
boundaries from a spaceborne 94-GHz nadir-looking radar. Since S-NPP and CloudSat
flew in the same orbital plane for several years, but at different altitudes (834 km and
705 km, respectively), these instruments provide nearly simultaneous observations of the

https://www.star.nesdis.noaa.gov/jpss/clouds.php
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same locations on Earth for a 4.5-h period every 2–3 days. The details of the evaluation
methodology by which VIIRS and CloudSat observations are spatially and temporally
matched are outlined in Seaman et al. [49]. We found that the performance of the IDPS
CBH algorithm was impacted by the accuracy of upstream retrievals (such as CTH and
the cloud type which was used to prescribe a characteristic cloud water content) and the
a priori information used by the CBH retrieval algorithm. With these limitations in play,
the initial IDPS CBH provided only marginal skill. These performance shortfalls, and
ensuing discussions of canceling production of the CBH product prompted exploration of
alternative approaches to the initial IDPS CBH algorithm.

To this end, a statistical CBH algorithm was developed using global passive-active sensor
cloud observations from NASA A-Train satellites: Aqua MODIS, CloudSat radar, and Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar [18,51–54]. The
notion of statistically relating observed CGT to various cloud properties using space-borne
active sensor data from CloudSat and CALIPSO, done not as an explicit and discrete function
of cloud type but instead as an implicit and continuous relationship, was built on the work
of Miller et al. [22]. The active sensor data sets have been used to retrieve quantitative cloud
properties such as ice/liquid water contents and precipitation [55–57]; in this case, they were
used as a form of training (and validation) for the CGT estimates. Here, we provide a brief
description of the retrieval, with a full description found in Noh et al. [50].

The statistical semi-empirical approach for retrieving CBH from VIIRS is readily
extendable to other similar passive visible and IR satellite observations. This CBH algorithm
is constrained by CTH and CWP, with supplementary NWP data, and using statistical
analyses of NASA A-Train satellites data (global July data from 2007–2010). To build the
algorithm, Aqua MODIS provided cloud cover, cloud top height, and cloud water path
information across a 2330 km swath. CloudSat and CALIPSO data were used to identify
vertical cloud geometric boundaries as shown in Figure 1.
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Figure 1. Sample of space-borne active-passive sensor data combinations for the CBH algorithm
development using A-Train satellite data (Aqua MODIS and CloudSat/CALIPSO).

With this information, we derived a statistical relationship between CWP and CGT con-
strained by CTH, yielding a set of pre-established, global statistical relationships, described
in detail by Noh et al. [50]. The CBH is derived by subtracting the estimate of CGT from
the retrieved CTH. Additional provisions were made for particularly challenging cloud
types, applying an extinction-based method for thin cirrus (COT < 1) which was developed
using CALIPSO data, and employing NWP-derived convective and lifting condensation
level data to assign CBH in cases of deep convection. Figure 2 shows a flowchart of the
algorithm (adapted from [50]).
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Figure 2. A schematic diagram of the statistical CBH algorithm for single-layer clouds (modified
from Noh et al. [50]).

The accuracy of CTH and CWP used as input for the CBH algorithm is important
as it relates directly to uncertainties in the CBH output. It is also noted that nighttime
collection requires using additional data from NWP models, since the quality of the CWP
retrievals is degraded compared to daytime products due to lack of visible information
used in multiple upstream cloud retrievals, including the cloud mask and cloud optical
thickness. Further, the CBH algorithm targets the uppermost cloud layer; it performs best
on single-layer clouds and can be considered a ‘ceiling,’ but may show marginal skill in
complex, multi-layer cloud scenes.

The algorithm has been applied to S-NPP/NOAA-20 VIIRS and evaluated against
independent CloudSat and CALIPSO data. This statistical CBH algorithm outperformed
the IDPS CBH and is now operational as part of the NOAA Enterprise Cloud algorithms.
The Algorithm Theoretical Basis Document (ATBD) is available at https://www.star.nesdis.
noaa.gov/jpss/clouds.php and VIIRS official products from S-NPP and NOAA-20 satellites
are publicly available at the NOAA Comprehensive Large Array-data Stewardship System
(CLASS; https://www.class.noaa.gov). For general users, the CBH and CCL products
are also displayed in near real-time at CIRA’s VIIRS Arctic website with an archive for
Alaska (http://rammb.cira.colostate.edu/ramsdis/online/npp_viirs_arctic.asp (accessed
on 31 October 2022)).

These cloud products and other VIIRS imagery for polar regions can also be viewed
on the CIRA Satellite Loop Interactive Data Explorer in Real-time (SLIDER; [58]) website
(https://rammb-slider.cira.colostate.edu). SLIDER displays real-time satellite imagery
for the polar environment, including flight level-based cloud layers on a loop. Sample
composites are shown in Figure 3. VIIRS Cloud Phase in these websites also includes the
“Supercooled Liquid-Topped Mixed-Phase (LTMP)” category for lower-level cloud phase
information under the cloud top [5,59].

https://www.star.nesdis.noaa.gov/jpss/clouds.php
https://www.star.nesdis.noaa.gov/jpss/clouds.php
https://www.class.noaa.gov
http://rammb.cira.colostate.edu/ramsdis/online/npp_viirs_arctic.asp
https://rammb-slider.cira.colostate.edu
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Figure 3. VIIRS cloud product examples. The upper panels show Cloud Layers, Cloud Geometric
Thickness (CGT), and Cloud Phase imagery over Alaska (upper panels). The bottom panels show
global CGT and Cloud Base Altitude (in feet for aviation users) together with VIIRS GeoColor over
the Northern Hemisphere as displayed on CIRA’s SLIDER website.

3. Validation

Product evaluation is a critical yet challenging activity for CBH and CCL products
due to limited suitable observational data. Using available data resources, the products
have been validated against surface-based and space-based observations for the purpose of
further refinements and long-term monitoring. Through multi-month matchup evaluations
between VIIRS and CloudSat, we confirmed that the new Enterprise CBH algorithm per-
forms better than the IDPS CBHs. Table 1 summarizes error statistics of the new algorithm
(Enterprise) and IDPS CBHs previously examined for September-October 2013 matchups
and January-May 2015 matchups between S-NPP VIIRS and CloudSat [50]. Figure 4 shows
the September-October 2013 matchups of IDPS and the Enterprise CBHs against CloudSat
data for all cloud types (top panels), and also includes new comparisons which were addi-
tionally conducted for the Enterprise CBHs for two specific cloud categories: (1) optically
thin clouds (COT < 1), and (2) low liquid water clouds (which CALIPSO can detect better
than CloudSat).

Table 1. Error statistics of the new algorithm and IDPS CHBs from S- NPP VIIRS–CloudSat matchups
(Modified from Noh et al. [50]).

CBHs (km) within Spec Only Average Error (Bias) RMSE r2

September–October 2013 matchups

Enterprise (95,145) 0.3 1.7 0.79
IDPS (85,495) 0.7 2.7 0.45

January–May 2015 matchups

Enterprise (216,745) 0.4 1.7 0.80
IDPS (162,079) 1.3 2.7 0.49
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Figure 4. An example of comparisons with independent CloudSat radar and CALIPSO lidar data
(modified from Noh et al. 2017). “Within-spec” two-dimensional histograms of VIIRS-retrieved and
CloudSat-observed CBH for the original IDPS CBH algorithm with CLAVR-x input (upper left), and
(right) the statistical Enterprise algorithm (implemented in the CLAVR-x system) for September–
October 2013. The bottom panels show optically thin clouds from the Enterprise CBH algorithm
compared with CALIPSO lidar data and water clouds compared with CloudSat and CALIPSO
combined data, respectively. Colors represent the number of data points (N; shown on a logarithmic
scale). The comparisons are valid for all cloud types encountered globally.

Another way to validate satellite information is to compare this data against ground-
based measurements such as those of the Atmospheric Radiation Measurement (ARM)
program, sponsored by the U.S. Department of Energy (DOE). We use ceilometer and
micro-pulse lidar measurements from the ARM sites on the Northern Slope of Alaska (NSA
in Alaska) and the Southern Great Plains (SGP in Oklahoma). Figure 5 shows a three-year
comparison between VIIRS CBH estimates and ARM ground observations from ceilometers
(black and gray) and micro-pulse lidar (red and brown). Multi-layer clouds can cause
outliers, which are particularly notable in the SGP area, possibly having more complex
cloud cases. Nighttime CBHs from nighttime cloud properties (Nighttime Lunar Cloud
Optical and Microphysical Algorithm-NLCOMP using DNB) are colored in blue.

In all, we evaluated three years of ARM data at both the NSA (2285 matchups) and
SGP sites (745 matchups) to determine what percentage of cloud base observations occurred
within a 2 km vertical window of the corresponding CBH observation from S-NPP and
NOAA-20. For the NSA site, these percentages were 89.23% for ceilometer data and 82.10%
for MPL measurements; for the SGP site, they were 85.10% for ceilometer data and 67.79%
for MPL data. It is noted that “Within-spec” data mean when VIIRS CTH is within 2 km of
the surface lidar-derived CTH (offering a valid comparison). This within-spec comparison
can help eliminate large CTH disagreement which is inherited from the upstream retrieval
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as an additional source of CBH errors. Precipitation cases were excluded in the evaluation
using ARM MET data. Collocations between VIIRS (parallax-corrected) and ARM locations
were performed within 0.1◦ and 5-min windows.
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Figure 5. CBH comparisons of VIIRS and ground-based data from Ceilometer (black and gray for lay-
ers) and Micro-Pulse Lidar (red and brown) collected from an Atmospheric Radiation Measurement
(ARM) Alaska NSA site (left; 2285 cases) and Oklahoma SGP site (right: 770 cases) for 2019–2021.
Note that matchups are valid only when CTH from lidar (MPL) is within a 2 km accuracy range
compared with VIIRS CTH (“within-spec”). Dotted lines represent 2 km error ranges, and CBHs
from a nighttime cloud optical property algorithm (NLCOMP) using DNB are colored in blue.

CALIPSO data having near-simultaneous colocation with these surface observations
have been added to capture multi-layered cloud cases which have optically thin (COT < 1)
clouds aloft for selected case studies (Figure 6). The Multi-Radar/Multi-Sensor System
(MRMS) data, which is an operational data integration system including a network of
radars, surface and upper-air observations, lightning detection systems, satellite, and fore-
cast models [2,60], is also available on CIRA’s SLIDER website and offers instantaneous
qualitative comparisons of the products. PIREPs can provide additional information for
cloud phase-related icing potential assessment. Since the algorithms are also applicable to
other sensors such as ABI and AHI onboard geostationary satellites, the inter-comparisons
of the products offer opportunities to identify performance issues and potential for fur-
ther improvements.
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Figure 6. Comparison of S-NPP VIIRS CTH and CBH with CALIPSO lidar and ground ceilome-
ter/lidar data for a multilayer cloud case near the ARM NSA site in Alaska as indicated in a pink
rectangle (1321 UTC on 3 January 2016). Here, mean CTH and CBH from VIIRS (blue dots in
the corner plot) only captured a topmost layer of the multilayered clouds, and ground ceilometer
(black/gray circles) and lidar (brown/red asterisks) measurements reported lower-level layers.
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Validation studies against spaceborne active sensor data and ground-based observa-
tions have revealed the need for further algorithm enhancements and more user-oriented
product demonstration as highlighted in the following bullets.

• The performance of the current CBH/CCL retrieval is affected by the accuracy of the
upstream cloud retrieval products used as algorithm input. The cloud algorithms,
including CBH/CCL, operate on pixels determined to be ‘cloudy’ or ‘probably cloudy’
by the VIIRS Cloud Mask. False/missed clouds by the VIIRS cloud mask will be
inherited by downstream cloud algorithms. CTH and CWP will directly impact
the accuracy of CBH estimates and thus CCL products. Inaccurate upstream cloud
retrievals will result in CBH failing to meet specifications.

• Nighttime performance is degraded relative to daytime, since NWP and IR-based data
are used in lieu of visible band data, adding uncertainties in retaining the product
consistency at night. This limitation has hindered the usage of these satellite data in
the Arctic during the long and dark winter seasons despite high spatial and temporal
coverage of the polar satellites at high latitudes. These issues can be mitigated in part
via use of the VIIRS DNB on nights with available moonlight (Section 7).

• The current CBH algorithm has been optimized for single-layer clouds or the up-
permost cloud layer by utilizing other upstream cloud properties. Multi-layered
cloud systems present challenges to VIIRS cloud retrievals despite interests in user
communities, particularly aviation, where lowest-cloud-layer detection can be criti-
cal. Therefore, the CBH and CCL products should be used with caution in regions
where multi-layered clouds are present. Further research to improve the algorithm
performance for multi-layered clouds is ongoing.

• Product validation for nighttime and multilayer cloud scenes is also challenging due
to the lack of proper observational data. CloudSat provides cloud vertical observa-
tions, but a battery anomaly has resulted in daytime-only operation since 2011 [61].
CALIPSO lidar observations are limited in their ability to detect lower cloud levels
below thick top layers and often experience anomalies (e.g., [62]). Surface-based mea-
surements from ceilometers, radars, and lidars can provide intensive in situ data but
are very limited in time and spatial coverage. Given various limitations in existing
observation systems, more effective combinations of these data sets and investigation
for new candidates should continue for validation and long-term monitoring.

• More user-friendly product demonstrations should be accommodated to maximize the
use of these satellite products. Although the new products have been developed and
improved utilizing innovative research approaches, the capabilities and applications
are not fully demonstrated on the users’ side. Outreach and improvements to provide
relevant products and training/display tools meeting their needs should be explored
through intensive user-developer interactions.

These topics continually motivate our evolving research priorities, as will be discussed
in the following sections.

4. Improved Cloud Cover Layers with CBH

The CBH algorithm is used to improve CCL products by augmenting lower-layer
cloud coverage below cloud top. The CCL, which describes fractional Low (L)-Middle
(M)-High (H) layer information (defined by either pressure or height thresholds, depending
on the user needs), was originally defined based on cloud top data only, and as such often
missed lower parts of clouds. By using CGT retrieved from the statistical CBH algorithm,
lower cloud layer fractions can be enhanced by introducing additional cloud coverage
typically hidden below the cloud top. The products can classify layers by using a variety of
prescribed thresholds based on pressure levels, or at flight levels for aviation community
users with different units (hPa, km, or kilofeet).

Furthermore, with the availability of CBH information, the CCL product can be
rendered at the native resolution of the cloud property retrievals instead of on a coarser
grid (e.g., 3 × 3 pixels, to provide fractional L/M/H coverage using CTH information
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alone). Examples of different thresholds used for each layer height range are shown in
Figure 7. It is noted that two thresholds of 440 hPa (~6.5 km) and 680 hPa (~3–3.5 km) are
used for the three-layer classification in the figure, following a definition of the International
Satellite Cloud Climatology Project (ISCCP) [63].
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Figure 7. Expansion of cloud classifications from three to five flight-based level layers. In this
example, the cloud shown on the left would previously be defined as a high cloud (H) in the original
CCL product, but the introduction of CGT information in the new product allows it to be classified as
high+mid (H+M), or as a cloud extending through flight layers 3, 4 and 5.

The improved CCL Product applies to various sensors including VIIRS and GOES-R
ABI, and provides new information about the deep parts of a cloud, such as convective
cloud layers that can produce both in-cloud and clear-air turbulence hazards of interest to
the aviation community. Figure 8 shows samples of cloud layer fractions (0–1 range) from
S-NPP VIIRS over Alaska at 1355 UTC on 29 June 2016 for each layer L/M/H cloud layer
bin when only CTH is used to calculate the fractions and when the CBH information is
included, respectively. The figure shows increased middle and low layer cloud fractions,
particularly over deep convective areas by including the new CBH. These results confirm
how the new CBH augments lower-level cloud fractions hidden under the cloud top.
Additional cloud layers are indicated by mnemonic designators indicating vertical cloud
extent; for example, “H+M+L” means that high, mid, and low cloud is present in the field
of view of the pixel, and so on (Figure 9). The previous CCL Product only allowed one of
the high, mid, or low cloud categories to be designated, leaving out important data on the
vertical extent that can impact flight planning and safety.
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Figure 8. Comparison of cloud fractions from S-NPP VIIRS over Alaska (1355 UTC 29 June 2016) with
and without cloud base information, respectively. The top panels show cloud fractions (0–1) only
from cloud top heights for each low, middle, and high layer, and the bottom panels show increased
middle and low layer cloud fractions by using the new CBH information.
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Figure 9. Sample of the improved NOAA Enterprise Cloud Cover Layers (CCL) Product from S-
NPP VIIRS over the central U.S. (1954 UTC on 7 October 2018) together with a CloudSat overpass
cross-section showing the detailed cloud top, cloud base, and vertical layer information. The newly
enhanced CCL includes vertically extended layer categories such as High+Low, High+Mid, Mid+Low,
and High+Mid+Low.

5. Further Refinements of CCL Using Machine Learning

Our CBH and CCL techniques are applicable to geostationary satellite sensors such as
the GOES-16, -17, and -18 ABIs. However, it remains challenging to determine the CTH of
the uppermost cloud layer in some multi-layered cloud systems, and it is difficult to identify,
let alone quantify, the height of underlying cloud layers from passive satellite observations.

Since multi-layered cloud systems occupy a large portion of the globe (e.g., [64]) and
are of particular relevance to the aviation community, they cannot be neglected. To begin
addressing these challenging cloud scenarios, we have developed a machine learning (ML)
based algorithm to detect the presence of a low-level cloud in the atmospheric column,
which takes into account multispectral information from the ABI as well as vertical profiles
of NWP relative humidity (RH) data. Details of the algorithm can be found in Haynes
et al. [57], and are summarized briefly here.

This algorithm, like the statistical algorithm previously described, is based on matchups
between passive sensors (in this case the ABI) and the radar and lidar-derived cloud boundaries
from CloudSat and CALIPSO. The approach applies Random Forest (RF) and Artificial Neural
Networks (ANN) to GOES ABI data and NWP model relative humidity (RH) data that are
trained with the aforementioned CloudSat and CALIPSO cloud boundaries as “truth.” RH
is included as a predictor because it is correlated with cloud occurrence. We want to avoid
hardcoding RH thresholds into the algorithm, though, as these thresholds vary regionally and
by season. Rather, we provide them as inputs to the ML algorithm, with the hope that the
model will learn to use this information in an optimal fashion.

As demonstrated by Haynes et al. [57], the RF and ANN neural networks perform
similarly, so the RF was chosen for operational implementation given the relative simplicity
of this framework. When applied to an independent testing dataset, the probability of
detection (PoD) of low clouds increased from 0.185 to 0.685 relative to the statistical CCL
algorithm that was previously described, while the false alarm ratio (FAR) decreased. For
those scenes that the ABI identified as “cirrus” (one of the most difficult scenarios for
multilayer detection), the PoD increase was slightly more pronounced (0.183 to 0.686).
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Beyond Haynes et al. [57], some changes have been made to make the algorithm
faster, allow operation at night, and ease transition of the algorithm to VIIRS. The daytime
algorithm uses the following predictors:

- ABI channels 1–6, 13 (0.47, 0.64, 0.87, 1.38, 1.61, 2.25, 10.35 µm)
- NWP profiles of relative humidity (maximum between 1000 and 600 hPa, and at

150 hPa)
- Solar zenith angle and latitude

The nighttime algorithm differs in that only infrared channels are used. In the full
version of the algorithm, a slight performance degradation at night was demonstrated [57].

It is noteworthy (and by design) that each of these ABI channels has a corresponding
VIIRS channel in the same spectral range. The team is working on translating this method,
initially developed in association with the GOES-R Proving Ground, to use VIIRS channels
as inputs. A preliminary application of the ABI model to VIIRS data, and the corresponding
change in the CCL product, is shown in Figure 10. In this example, the trained daytime ABI
model was applied to the nearest VIIRS M-band channel (although for greater accuracy
it will be necessary to account for calibration differences and differing spectral response
functions between the two instruments). Low cloud detections from the ML algorithm were
used to supplement the predictions based on the non-ML, statistical cloud base algorithm.
Two main differences are evident when ML is included: significant areas of H+M are
transitioned to H+M+L as ML-detected low clouds are added, and areas of H+L clouds are
newly produced. The results show that the ML algorithm can contribute to identifying low
cloud presence which has important aviation and various meteorological implications.
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Figure 10. Example CCL product for NOAA-20 VIIRS at 1718 UTC on 28 June 2022. (a) Channel M5
(0.672 µm) reflectance, (b) CCL product without machine learning model, and (c) CCL product with
machine learning model applied. Colorbar refers to cloud layer categories in (b,c).

6. User Engagement for the Aviation Applications

The improved CBH and CCL products can provide more information about what
occurs in vertically extended cloud layers that pilots might encounter at their flight level.
Pilots must follow a specific set of rules, established by the Federal Aviation Administration
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(FAA) in the United States and other agencies internationally, to operate aircraft in different
weather conditions. Visual Flight Rules (VFR) restrict pilots from flying through clouds
because they must maintain horizontal visibility of three to five miles (~5–8 km). VFR
requires that they must either fly under, over, or divert around clouds if they intercept
their route (“see and avoid”). In contrast, Instrument Flight Rules (IFR) allow pilots to use
cockpit instruments to navigate a plane through clouds and rough weather conditions. CCL
information enables pilots to anticipate areas of clouds that could turn a VFR flight into an
IFR one, which is important for flight planning and in-flight adjustments. Understanding
cloud layer conditions also helps pilots anticipate problems with terrain that are hidden in
the clouds and may not be visible to the pilot, particularly for VFR and in the rare scenario
of an on-board instrument failure.

Leveraging the early success of the advanced CBH and CCL products, we have con-
tinued further improvements to provide optimized retrievals for users. Through ongoing
efforts, we recently introduced VIIRS Cloud Vertical Cross-section (CVC) products along
flight paths for the Alaska region, supporting the NOAA JPSS Aviation Initiative which
encourages user-developer interactions for effective product transition to operations. Rec-
ognizing the need for improved forecasting of aviation hazards, NOAA established the
JPSS Aviation Initiative in 2018 with a focus on engaging pilots and aviation forecasters in
Alaska. This initiative helps the polar aviation community by providing new and improved
satellite products, while also facilitating collaborations with end users.

In support of this initiative, we have been working on new approaches to enhance
satellite cloud information. This is an experimental product demonstration to provide
vertically extended cloud structure information that forecasters can easily access, interro-
gate, and interpret for aviation applications. Focusing on the needs of aviation users in the
data-sparse region at high latitudes (and looking toward the future extension to CONUS
and global scales), we aim to provide aviation-focused satellite observations beyond typical
2D plan-view imagery.

NOAA offers a great number of satellite cloud products in their Enterprise Cloud
Product Package, and other operational agencies provide a similar variety of data sets.
With the numerous meteorological data resources given to forecasters and aviation users,
“data overload” can occur, so it is necessary to deliver data in a user-friendly format. Our
experimental CVC product is a preliminary attempt to provide a comprehensive 3D cloud
data set for aviation applications. With an S-NPP or NOAA-20 satellite overpass of Alaska,
cross-sections of cloud information along selected flight paths from VIIRS are linked to a
website (https://rammb.cira.colostate.edu/ramsdis/online/npp_viirs_arctic_aviation.asp
(accessed on 1 November 2022)).

The website graphically displays a vertical view of cloud properties along popular
aviation routes, including cloud boundaries, cloud conditions, and terrain. Turbulence and
icing conditions from pilot reports (PIREPs) and NOAA Unique Combined Atmospheric
Processing System (NUCAPS; [65–67]) temperature data are added to the cross-sections
when available. If the NUCAPS temperature data are not available or invalid, NWP model
data are used. As shown in Figure 11, the product is regularly adjusted and improved
based on user feedback, and the cloud cross-sections help pilots understand how far clouds
might extend toward the surface and thus better understand hazardous conditions in their
path. Provided below is a quote from a NASA online news article [68] on this research effort
including an interview message below from Adam White—an Alaska pilot, a government
liaison for the Alaska Airmen’s Association, and a participant in the JPSS Aviation initiative:

https://rammb.cira.colostate.edu/ramsdis/online/npp_viirs_arctic_aviation.asp
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Figure 11. Sample cloud vertical cross-section between Bethel and Anchorage, Alaska from NOAA-20
VIIRS at 2228 UTC on 21 January 2021.

“While the tops of clouds are important, I need to know what the clouds are made of,
and I need to know how far down they go and how close they are to the ground, and this
is the first time we’ve had a product that helps us answer these questions. I’ve made
decisions not to fly on a particular day because of what this product has shown me, even
in the testing phase. It’s saved me from potential problems, whether it’s icing or clouds
down to the ground that I wouldn’t be able to navigate.” (Adam White, Alaska Airmen’s
Association)

Initially, the Cloud Vertical Cross-section product was only available along popular
flight routes in Alaska. It has since been extended to more pre-selected paths over the lower
48 states in the U.S.; for example, Seattle to Denver (https://rammb.cira.colostate.edu/
ramsdis/online/npp_viirs_conus_aviation.asp (accessed on 1 November 2022)).

Recognizing the value of this information, aviation users requested the option to
select custom routes. In response to the user request, we launched a fully interactive
website (https://aviation.cira.colostate.edu/) that allows users to select two or more lati-
tude/longitude way-points on a map and create a cloud vertical cross-section for that route
as shown in Figure 12. The website includes a “user quick guide” that has been updated
with feedback from Alaska local pilots, and a user-feedback option to provide researchers
with direct feedback on any cross-section that is generated.
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accessed on 31 October 2022).
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Allowing users to generate their customizable cloud cross-sections required additional
data processing, including the back-end construction of a fully gridded, 3D cloud dataset.
A preliminary interpolation process was developed to generate one gridded 3D cloud field
from the various datasets used for CVCs. Figure 13 shows a schematic diagram of the
3D cloud data processing. We are currently using a horizontal resolution of 0.02◦ × 0.02◦

with 51 vertical levels at 1000 ft resolution. Typical nearest neighbor and inverse-distance
weighting interpolations are used, and the output is saved with compact 16-bit integers
into a NetCDF file. CVCs are updated every time there is a JPSS satellite overpass, so users
can watch for changing conditions. Archived cross-sections dating back four weeks are
available for pre-selected routes. The custom cross-section product is currently available
for Alaska, and preliminary output is also shown for other U.S. regions.
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User feedback based on the real-life experiences of aviation users is essential for mak-
ing further meaningful improvements to the new products. The products receive regular
feedback from Alaska users and have been improved through active user interactions,
reflecting the initial goal of increasing the utility of the JPSS cloud products to aviation
users. Forecasters can also benefit from the enhanced capabilities. We strive to engage
users of our aviation weather products, ranging from pilots and aviation meteorologists,
through direct communication, social media, and online surveys.

Working with end users has been necessary to improve and evaluate new satellite
products and to transition products from research to societal benefit. One report from an
Alaska pilot used in product evaluation, which revealed a high bias of the CBH estimator
for this case, is shown below.

“I took off from FAI (Fairbanks International Airport) at 2300Z Sept 21 and landed at
MRI (Merrill Field Anchorage) at 0100Z Sept 22 (3 pm to 5 pm AKDT). I observed no
ceiling from FAI to the Alaska Range foothills, which is basically in agreement with the
cross-sections. By the time I was over Totatlanika River strip (9AK) I was under scattered
to broken clouds with bases around 5500 ft MSL. Basically, I flew under a broken to
overcast ceiling that was at about 5500 to 6000 ft nearly all the way from McKinley Park
(PAIN) to about Willow (PAOU). These bases were considerably lower than shown on the
cross-sections for most of the route...” (an email report from an Alaskan pilot)

The products have been used as supplementary observational data to investigate
aviation accidents. For example, an accident occurred around 2251 UTC on 16 August 2021
near Fairbanks, Alaska. A small plane carrying eight passengers and a pilot encountered
severe turbulence that caused flight control issues. The pilot landed safely with no reported
injuries, but the aircraft’s wing was significantly damaged. During its investigation, the
National Transportation Safety Board (NTSB) used archived Cloud Vertical Cross-sections
and NOAA-20 VIIRS Infrared imagery to assess flight path conditions along the route and
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found that wing ice contributed to the accident. Icing conditions along the route are shown
in cyan (supercooled liquid cloud) on the archived cross-sections in Figure 14.
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NTSB accident investigation which occurred around 2251 UTC on 16 August 2021 near Fairbanks.

7. Improvement of Nighttime Performance with DNB Data

Nighttime algorithm performance suffers from a lack of reliable CWP data. Conven-
tional retrieval approaches for daytime cloud optical properties used to compute CWP
have been well developed [69–71] but still show limited performance at night [72].

Refinements for nighttime CBH/CCL retrievals using VIIRS Day/Night Band (DNB) [73]
have been explored as a continuing effort to provide improved nighttime retrievals, concen-
trating on the needs of operational users and pilots in high latitude data-sparse regions such
as Alaska during dark winter months, with the high temporal resolution provided by JPSS
satellites filling a data gap where data coverage from geostationary satellites is limited.

In the statistical CBH algorithm, CBH is generated by subtracting CGT from CTH.
Here, CGT is retrieved from the lookup table utilizing CWP as input. Together with CTH,
consistent CWP information (from cloud optical properties, COT and EPS) is important
to derive accurate CGT and thus CBH in the algorithm. Since IR brightness temperatures
quickly saturate in cloudy scenes, these measurements provide little information about
the CWP. In contrast, the weak absorption of both liquid and ice-phase clouds provides a
tractable way to derive CWP via reflected sunlight during the day. The problem is far more
challenging at night due to the lack of visible light.

We have been utilizing capabilities of the NLCOMP retrievals [71,72] with VIIRS DNB
based on a lunar reflectance model by Miller and Turner [73,74], which are embedded in
the CLAVR-x system. The VIIRS DNB has provided a unique opportunity to overcome
many limitations in nighttime cloud observations [74,75]. With enhanced CWP input from
the NLCOMP algorithm with DNB, we have improved the quality of nighttime CBH/CCL
retrievals during periods with sufficient lunar illumination. These products generated from
CLAVR-x are available at CIRA’s Polar SLIDER and VIIRS websites. When moonlight is not
sufficient, an NWP-based CWP estimate is provided as input for the CBH algorithm. When
NWP data do not provide a cloud properly at the cloudy pixel location (often for very
thin cloud cases), the extinction-based CBH [50] can be used alternatively. Sample CGT
retrievals using CWPs from NLCOMP with DNB and NWP data are shown in Figure 15.
This updated algorithm enlisting DNB lunar information in place of purely NWP-based
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CWP at night will be included in the operational release through the NOAA CLASS (VIIRS
operational cloud product version-v3r2).
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CTH from S-NPP at 1253 UTC on 22 December 2018.

8. Future Work

As this vertical cloud distribution is more fully developed, opportunities for new
products will become possible. For example, we aim to quantify not only the vertical
location of clouds, but also the water content of these clouds. The ability to retrieve ver-
tical distributions of water content from a passive sensor would be particularly useful
for detecting dangerous aircraft icing conditions. To this end, we are currently explor-
ing the use of ANNs and convolutional neural networks (CNNs; [76]), including U-Net
architectures [77], to derive the vertical distribution of cloud liquid and ice within the
VIIRS footprint, as constrained by the cloud water path derived for the scene. The training
for these datasets is the cloud water content retrievals from the radar onboard CloudSat,
matched to VIIRS observations.

On moonless nights, the current CBH accuracy becomes highly dependent on the
corresponding NWP data accuracy. As part of ongoing research for improved nighttime
retrievals, we are exploring the use of the Advanced Technology Microwave Sounder
(ATMS) data as an alternative to NWP data. This multi-sensor/model-fusion approach has
been utilized to overcome traditional IR-based retrieval limitations at night. The ATMS
CWP data from S-NPP and NOAA-20 is processed at a higher resolution of ~15 km (at nadir)
through the NOAA operational Microwave Integrated Retrieval System (MiRS) [78,79]. It is
noted that the operational ATMS water path data are valid for non-precipitating clouds only,
and its performance over land is limited. Statistical regression analyses of CWP parameters
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from VIIRS DNB (NLCOMP) and ATMS together with NWP (currently the NOAA Global
Forecast System (GFS) model) and IR CWP data are ongoing for full moon periods over
Alaska. Ocean-only data are currently used to avoid errors associated with land and sea
ice reflectance and emission contributions. Further new approaches including a machine
learning approach (such as RF [80]) are being tested in parallel to effectively combine these
multiple data sets which have non-linear characteristics with different resolutions. The
fusion of these data will be explored for potential updates.

Through validation against other satellites and ground-based measurements, detailed
uncertainty and error analysis has been performed for the long-term stability of the al-
gorithm and products. In future validation studies, additional space-borne active sensor
data will be utilized to analyze the 3-D cloud structure over larger domains, as allowed by
data availability. Data sources we will use include the Earth Cloud Aerosol and Radiation
Explorer mission (EarthCARE [81]; launch scheduled for 2023) by the European Space
Agency (ESA) and the Japan Aerospace Exploration Agency (JAXA), carrying lidar and
radar. The Dual-frequency Precipitation Radar (DPR) onboard the Global Precipitation
Measurement (GPM) mission [82] could be utilized for the southern Alaska region (up to
~65◦N) and CONUS for limited case studies, taking into account its relative insensitivity to
clouds compared to precipitation.

9. Summary

Conventional passive radiometers offer a ready means to assess cloud-top properties
but have traditionally been limited in their capability to provide the 3D cloud structure
information required by various aviation weather applications as well as climate studies.
Tied with JPSS VIIRS research over the last ten years, we have developed a statistical, semi-
empirical CBH algorithm based on a global analysis of active and passive sensor-combined
satellite observations. The new algorithm has been demonstrated to outperform the initial
IDPS CBH algorithm through intensive validation studies. The new CBH algorithm is
currently operational as part of the NOAA Enterprise Cloud Algorithms. The algorithm
development and validation efforts were overviewed in this paper.

With the successful implementation of the CBH algorithm into NOAA JPSS operations,
VIIRS cloud products have been demonstrated to Alaska aviation users as part of the NOAA
JPSS Aviation Initiative efforts, which included the Enterprise CBH and improved CCL.
The aviation community has relied on pilot reports about observational cloud conditions
hidden under the cloud top in the atmosphere. Understanding the cloud properties from
top to bottom is essential for pilots to avoid hazardous weather situations, and the lack of
vertical data is a key consideration in preparing their flight plans in case of severe weather
conditions. An initial goal of our work was to maximize the benefits and performance
of JPSS cloud products, particularly in terms of providing more comprehensive 3D cloud
structure information with CBH/CCL products and taking advantage of increased temporal
coverage from JPSS satellites, S-NPP, NOAA-20, and the upcoming JPSS-2 (slated for launch
in late 2022).

By directly interacting with aviation users, we obtained valuable feedback and insights
that allowed us to optimize a new approach to provide satellite-based 3D cloud data. Due to
the coarse aviation observational network in this region and, as often affirmed by comments
from NOAA operational forecasters and aviation users, satellite-derived cloud products are
extremely helpful in filling significant observational gaps. Focusing on user needs, the work
could step forward to provide more practical satellite cloud products in a user-friendly,
user-driven format in this data-sparse region.

The experimental CVC product adds a vertical dimension to the traditional 2D cloud
retrieval products, which is the first to offer pilots the ability to see what is happening
inside a cloud along a flight path based on satellite observations. The products are obtained
by combining multiple Enterprise cloud products from VIIRS together with supplementary
data beneficial for aviation users, such as temperatures related to icing as well as PIREPs,
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with an eye toward providing a comprehensive, expandable data package based on satellite
cloud observations.

These products not only benefit the aviation community, but are also useful for weather
and climate modeling. Frequent feedback and interactions from aviation users have
enabled further refinements of the products and training/display tools for users. Building
on this feedback and collaboration, additional features and improvements to the CVC
product and user interfaces have been pursued, including user-selectable cloud cross-
section features based on 3D gridded satellite cloud data and extending this effort to global
coverage. Feedback also drives future efforts and products. We continue to hone additional
approaches for the current CBH and CCL algorithms including the use of machine learning
for improved multi-layer cloud retrievals and refinement of nighttime performance.

This work represents an initial step to creating a new generation of satellite-based
cloud products for the whole weather and climate research community as well as aviation
users. The ultimate goal is to provide users with additional, high-quality vertical cloud
information in the atmosphere. Improved weather monitoring and forecast capabilities at
high latitudes including Alaska, where we started this satellite-based 3D cloud research, are
vitally important for commerce and transportation growth and to protect the safety of both
residents and workers in this region marked by weather extremes and a changing climate.
JPSS satellite cloud products provide a wealth of quantitative observations necessary for
improving our fundamental understanding of cloud vertical structures, and are helping
improve aviation weather applications in data-sparse regions. This work will contribute
to improving our scientific understanding of global clouds and provide practical use of
satellite-based cloud products. While this work was initiated in Alaska, we expect it will
benefit the entire globe when fully deployed. Due in large part to the contributions and
feedback from a highly engaged user community, the future is bright for the continued
development of JPSS-supported satellite-based innovations for the meteorological and
aviation communities.
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